
 

Automata-Based Verification of Temporal Properties on Running Programs 
 
 

Dimitra Giannakopoulou (RIACS) and Klaus Havelund (Kestrel Technologies) 

Automated Software Engineering Group 
NASA Ames Research Center, CA, USA 
{dimitra, havelund}@email.arc.nasa.gov 

 
      

Abstract 
This paper presents an approach to checking a 

running program against Linear Temporal Logic (LTL) 
specifications. LTL is a widely used logic for expressing 
properties of programs viewed as sets of executions. Our 
approach consists of translating LTL formulae to finite-
state automata, which are used as observers of the 
program behavior. The translation algorithm we propose 
modifies standard LTL to Büchi automata conversion 
techniques to generate automata that check finite 
program traces. The algorithm has been implemented in 
a tool, which has been integrated with the generic JPaX 
framework for runtime analysis of Java programs. 

 
 

1 Introduction 
 
Computer program correctness has, for decades, 

concerned industry and been studied in academia. Formal 
verification techniques such as theorem proving and 
model checking have been developed, that attempt to 
mechanize proofs that a program satisfies specifications 
expressed in some formal logic. However, such formal 
methods still remain to reach a state where they can be 
used in practice without considerable manual effort. A 
recent research direction is for model checking to be 
applied directly to programs written in standard 
programming languages such as Java and C [1, 2]. 

Although we find this work of great interest, we 
believe that a light-weight use of formal techniques will 
be useful and more practical in the shorter term. By 
“light-weight”, we mean a method that is completely 
automatic, irrespective of the size of the examined 
program. Hence, the main concern is scalability:  the 
technique should be practically applicable to large 
systems consisting of hundreds of thousands of lines of 
code. 

An example of such a light-weight technique is what is 
often referred to as program monitoring. Here, the idea is 
to monitor the execution of a program against a formal 
specification written in some logic. This kind of 
technique is practically feasible since only one trace is 
examined, and it is useful since the logic allows stating 

more complex properties than is normally possible in 
standard testing environments.  

In this paper, we describe an effort to develop such a 
technique for monitoring program executions against 
high-level requirement specifications written in Linear 
Temporal Logic (LTL). LTL is used to express properties 
in several model-checking environments [3]. Model 
checking an LTL property consists of generating a Büchi 
automaton for the negation of the property, and 
subsequently detecting cycles in the synchronous product 
of the model/program to be checked with the automaton.  

Büchi automata are finite automata on infinite words. 
So the question naturally arises whether Büchi automata 
can be used to efficiently monitor finite traces of 
executing programs (since, either the program will 
terminate, or it will be interrupted at some stage). A 
typical way to model check a finite trace with Büchi 
automata is to extend the trace by repeating the last state 
indefinitely. However, we have found that the 
expressiveness of Büchi automata is not really required 
for checking finite traces.  

The work presented in this paper provides a more 
efficient alternative to the use Büchi automata. We have 
developed an algorithm, based on standard LTL to Büchi 
automata construction techniques, which generates 
traditional finite-state automata that can be used to 
monitor efficiently LTL formulae on finite program 
traces. Our algorithm has been implemented in Trace 
analyZer (TaZ), an observer generator tool written in 
Java. TaZ has been integrated in Java PathExplorer  
(JPaX) – a generic tool for monitoring Java programs [4]. 
The result is an environment that can automatically check, 
on-the-fly, whether the current run of a Java program 
conforms to an LTL formula. 

The remainder of this paper is organized as follows. 
Section 2 introduces LTL semantics on finite executions. 
It thus sets the theoretical grounds for Section 3, which 
presents our algorithm for generating LTL runtime 
observers. In Section 4, we discuss in more detail how 
TaZ generates observers based on our algorithm, and how 
the observers are used for program monitoring. Section 5 
discusses related work, and Section 6 closes the paper 
with conclusions. 

 



 

2 Finite-trace semantics for LTL 
 
An executing program defines a sequence of states; an 

infinite execution can be viewed as an LTL interpretation, 
which assigns to each moment in time the set of 
propositions that are true at the particular program state. 
Model checking [5] detects infinite executions of finite-
state systems through cycles in their state graphs; such 
executions define interpretations on which the truth-value 
of LTL properties is determined. Runtime verification, on 
the other hand, does not store the entire state-space of a 
program. Rather, it only observes finite program 
executions. For runtime verification, we therefore need to 
interpret LTL formulae on finite program traces.  

We base our finite trace semantics on the following. 
Every LTL formula may contain a safety part or an 
eventuality part (or both). The safety/eventuality part 
requires that something bad-never/good-eventually 
happens in an execution. We modify the 
safety/eventuality requirement to mean that, in the portion 
of the execution that we have observed, nothing 
bad/something good happens. To reflect this, we modify 
the standard semantics of the temporal operators of LTL 
accordingly [6]. In what follows, we describe the syntax 
and finite-trace semantics of LTL as used in this paper. 

The set of well-formed LTL formulae is constructed 
from a set of atomic propositions (℘ ), the standard 
Boolean operators (not “!”, and “∧ ”, or “∨ ”, implies 
“→”), and the temporal operator until “U”. The following 
abbreviations are typically used: <>φ (eventually) for 
TRUEUφ, and []φ (always) for !<>!φ. Finally, we also use 
the temporal operator V which is defined as the dual of U, 
that is: φVψ = !(!φU !ψ).   

Note that we are only interested in the next-free 
variant of LTL, namely LTL-X. This is typical in 
verification, because LTL-X is guaranteed to be 
insensitive to stuttering [5], which avoids the notion of an 
absolute next state. In the rest of this paper, the next-free 
variant of LTL is implied whenever we refer to LTL. 

An interpretation of an LTL formula is a finite word 
w= x0…xn over 2℘ (sets of propositions), where at some 
time point 0≤ i ≤ n, a proposition p is true iff (if and only 
if) p∈ xi. We write wi for the suffix of w starting at i. The 
semantics of LTL is defined as follows: 

PROPOSITIONS: For φ∈℘ , w |= φ iff φ∈ x0.  
BOOLEAN OP:  Standard semantics [7]. 
TEMPORAL OP: w |= φUψ iff there exists 0≤ i ≤ n such that 

wi |= ψ and for all 0 ≤ j < i , wj |= φ. 

So the temporal operator U requires that ψ becomes true 
in the portion of the execution that has been observed, 
and that, of course, φ remains true in the interval that 
precedes the occurrence of ψ.  

 

3 Algorithm 
 
The goal is to construct a finite-state automaton that 

accepts exactly those finite words that satisfy a given 
LTL formula φ. Our algorithm is based on an efficient 
tableau-based LTL to Büchi automata translation 
presented in [7]. It generates an automaton for an LTL 
formula in two stages. First, it constructs a graph that 
represents the final automaton but without designated 
accepting states. Second, it selects accepting states. We 
remind the reader that the automata we generate are 
standard finite automata on finite words; as such, they 
accept finite traces that can lead them to an accepting 
state [8]. 

Construction: The first stage of our algorithm proceeds 
in essence in the same way as the corresponding stage of 
[7]. Given that, and due to space limitations, we will only 
briefly summarize this part of our construction. For more 
details, the reader is referred to [6, 7]. 

We deal with LTL formulae in negation normal form 
(all negations are pushed inside until they precede only 
propositional variables). The construction of the 
automaton is based on expanding a graph node. A graph 
node is a data structure that contains the following fields:  

NAME: a unique name for the node. 
INCOMING: the set of nodes that lead to this node, i.e., 

which have incoming edges to this node. 
NEW: the set of LTL formulae that must hold on the 

current state but have not yet been processed. 
OLD: the set of LTL formulae that have already been 

processed. Each formula in NEW that gets processed is 
transferred to OLD. 

NEXT: the set of LTL formulae that must hold at all 
immediate successors of this node. 

Field NEW in a graph node contains all the formulae that 
the node must make true. The idea of the expansion 
algorithm is to move formulae from NEW to OLD one by 
one by processing them in the following way. Each 
formula is broken down until we get to the literals 
(propositions or negated propositions) that must hold to 
make it true. For example, φ∧ ψ is broken down by adding 
both φ and ψ to the NEW field of the node. If there are 
alternative ways to make a formula true the node is split 
in two nodes, each of these nodes representing one way 
of making the formula true. For example, to make φ∨ ψ 
true, we split the node into one node that makes φ true 
and another that makes ψ true. To satisfy temporal 
operator formulae, a node needs to also push obligations 
to its immediate successors. These obligations are stored 
in field NEXT, and are based on the following identities: 
φUψ ≡ ψ ∨  (φ ∧  X (φUψ)), and φVψ ≡ ψ ∧  (φ ∨  X (φVψ)). 



 

When a node has been fully processed (i.e., the NEW 
field has become empty), the node represents a state of 
the automaton. Before being added to the automaton, it 
gets compared with all previously computed nodes/states. 
If the automaton already contains an equivalent node, the 
two nodes get merged. The notion of equivalence in our 
context is different from the one in [7]. 

Accepting states: As mentioned in [7], any path within 
the graph generated as discussed above is guaranteed, by 
construction, to satisfy all the safety conditions of the 
formula to which it corresponds. However, accepting 
conditions need to be imposed to make sure that 
eventualities are also satisfied. More precisely, we need to 
make sure that whenever some node contains φUψ, some 
successor node will contain ψ.  

In our finite-trace semantics, we must ensure that any 
finite execution of the automaton that concludes in an 
accepting state (called an accepting execution) satisfies 
all the required eventualities. The eventualities that 
remain to be satisfied after any finite execution of the 
automata we generate, are reflected by the formulae 
contained in the NEXT field of the last state of this 
execution. This means that, unless there exist U formulae 
in the next field of the state, this state has satisfied its 
potential eventuality requirements.  

Therefore, our algorithm designates as accepting those 
states that do not contain U formulae in their NEXT fields. 
The initial state is non-accepting, which reflects the 
assumption that traces contain at least one (initial) state.   
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Fig. 1: Collapsing nodes with different OLD fields 

Equivalent nodes: It can be seen from our construction 
that field OLD is used by our algorithm only to generate 
the labels of the automaton, but plays no role in the 
identification of accepting conditions. Therefore, two 
nodes are equivalent in our context when they have the 
same NEXT fields. Our algorithm typically generates 
fewer states than [7], since in [7] nodes can only be 
merged if both their NEXT and OLD fields are the same. 
This, however, does not make the OLD field redundant in 
our case; the literals contained in it are needed in order to 
determine labels of the automata edges. Therefore, our 
construction only stores literals (rather than any processed 
formula) in field OLD.  

One needs to be careful during the process of 
collapsing equivalent nodes. If two nodes are collapsed, 
the resulting node must record the information of each 

component’s INCOMING field and its associated OLD field. 
This is for it to record that it is obtained from alternative 
parent nodes by potentially different sets of literals. In the 
simple case where the literals in the OLD fields are the 
same, the OLD field of the resulting node is the same as 
the corresponding field of either of its components, and 
its INCOMING field is obtained as the union of their 
corresponding INCOMING fields.   

For example, assume that a node N1 with OLD={ϕ} 
(where ϕ is a proposition) and INCOMING={N2}, is 
collapsed with node N3 with OLD={!ϕ}, and 
INCOMING={N4). Let us call the resulting node N1-3. This 
information is kept appropriately in node N1-3, so that in 
the generated automaton, it will look as in Fig. 1. 

Optimizations: Since the automata that our algorithm 
generates are finite automata on finite words, standard 
algorithms can be used to make these automata 
deterministic and minimal (details in [6]). For example, 
the deterministic and minimal automaton corresponding 
to formula [](a→<>b) is illustrated in Fig. 2.  
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Fig. 2: Automaton corresponding to [](a→<>b)   

 
4 Program monitoring 

 
We have developed a tool, the trace analyser (TaZ), 

which receives as input an LTL formula, and generates an 
observer for traces of running programs, using the 
algorithm presented. TaZ has been integrated with the 
internally developed runtime-monitoring tool Java 
PathExplorer (JPaX) [4].  

JPaX: JPaX is a general environment for monitoring the 
execution of Java programs. It consists of an 
instrumentation module, and an observer module. 

Instrumentation is based on a script given by the user, 
which specifies the program variables to be monitored. 
The automated instrumentation inserts event-transmitting 
code after all updates to these variables. The updates are 
collected in an image state separate from the executing 
program state. The instrumentation script also defines a 
collection of Boolean valued proposition variables and an 
association between these and predicates over the 
observed program variables. When an image state-change 



 

occurs, the propositional variables are re-evaluated, and 
what is sent to the observer is changes in these 
propositional variables. The Java byte code 
instrumentation is performed using the powerful Jtrek 
Java byte code-engineering tool from Compaq [9].  Jtrek 
makes it possible to easily read Java class files (byte code 
files), and traverse them as abstract syntax trees while 
examining their contents, and inserting new code. 

The instrumented program, when run, emits 
relevant events to the observer. The observer may run on 
a different computer, in which case the events are 
transmitted over a socket. 

TaZ observers: An observer in TaZ is a data structure 
that consists of the following fields: 

•  The automaton for the formula to be checked. 
•  The current states of the automaton. These may be 

multiple if the automaton is non-deterministic. 
Initially, the automaton is in its initial state. 

•  A hash-table that records the values, at the program 
state that is being verified, of the propositions 
involved in the formula. 

The observer class implements the following interface, 
required by JPaX: 

 
interface LTL{

void init(STATEINIT init);
void next(STATECHANGE change);
void end();}

 
Method init is called by JPaX to pass the observer the 
values of propositions at the initial program state. Then, 
each time the proposition values change, JPaX calls the 
next method of the observer to pass it information about 
the state change. This is provided as a list of propositions 
that have changed value since the previous state. 

Every time next is called, the observer performs the 
following steps. It updates the values of propositions in 
its local hash-table of the program state. It then checks 
which transitions rooting at its current states are enabled. 
To do this, it checks if the state of the program is 
compatible with the literals labelling these transitions. If, 
for example, !a labels a transition trans, and a is false in 
the current program state, then trans is enabled. The 
current states of the automaton are then updated to be the 
set of states that are reached through enabled transitions. 
If this set is empty, it means that the automaton cannot 
make a step, which reflects the fact that the property is 
violated by the specific trace of the program. This 
information is reported, which concludes the observer’s 
job. 

When the program is stopped, and if the observer is 
still running (i.e. it did not yet detect a violation or the 
fact that the property is satisfied), the program calls the 
end method of the observer. At this stage, the observer 

checks its set of current states. If there exists/does not 
exist at least one accepting state within this set, then the 
observer reports the fact that the property is 
satisfied/violated by the specific program trace, 
respectively.  

Stuttering: As mentioned, the LTL-X variant of LTL is 
insensitive to stuttering. Therefore, the observer only 
needs to be notified whenever propositions in its alphabet 
change value. This can be implemented by the observer 
initially informing JPaX about the particular state 
attributes it is interested in observing. 

Experimental results: We have used TaZ to generate 
automata for large formulae (more than 20 operators, 
mostly U, V and \/s, which cause nodes to split), and it 
produces results instantaneously. Checking program 
traces with the observers we generate is linear in the 
program trace, thus also very efficient.  

We have applied our tools to artificially generated 
traces for early testing purposes. For properties that 
require checking the entire trace before a result is 
produced (e.g. <>[]φ), it takes our approach less than 5 
minutes on a Pentium 4, 1.3 GHz processor, to process a 
trace 100 Million state-changes long. Currently, our tools 
do not implement the algorithms for making the automata 
generated deterministic and minimal; we expect that when 
these algorithms are incorporated, performance will be 
further improved.  

Finally, we are also considering various ways of 
minimizing the effort required to compute enabled 
transitions [6].  

 
5 Related Work 

 
Program monitoring against specifications expressed 

in various logics has been investigated by several 
researchers. In [10], for example, the authors describe an 
algorithm for generating test oracles from specifications 
written in GIL, a graphical interval logic. Similarly to our 
approach, the oracles are based on automata. The 
generation is performed in two phases. During the first 
phase, a hierarchical non-deterministic automaton is 
computed, which, during the second phase, is turned into 
a classical deterministic finite automaton. The authors do 
not mention the application of minimization techniques to 
the resulting automata. The automata that they generate 
are typically larger than the ones that our algorithm 
computes. The reason is that they do not attempt to 
collapse equivalent states during generation.    

An approach based on rewriting logic is presented in 
[11]. The authors have implemented in Maude [12] (an 
efficient rewriting logic system), rules that describe how 
an LTL formula is transformed by a new state 
encountered in the program, and how to decide, when the 
end of a trace occurs, whether the specification was 



 

satisfied or not. This approach is less efficient than 
automata-based approaches, because it computes the 
transformations on the LTL formula during the analysis. 
Automata, on the other hand, are generated prior to 
analysis, and encode how state changes are triggered by 
inputs from program traces. Maude is, however, a 
powerful prototyping tool; it allows to easily define 
various types of logics. The authors have used it to also 
support past-time logics, for example [4].  

The Temporal Rover (TR) [13] is a commercial tool 
for program monitoring based on temporal logic 
specifications. TR allows users to specify future time 
temporal formulae as comments in programs, which are 
then translated into appropriate Java code before 
compilation. 

 
6 Conclusions 

 
We presented an approach to generate deterministic 

and minimal finite-state automata used to check running 
programs against LTL specifications. The core of the 
algorithm modifies standard LTL to Büchi automata 
construction techniques. These techniques have been 
polished for efficiency over years of research. It has 
therefore been important for us to use these as a 
foundation. Moreover, we have been able to exploit 
standard algorithms for determinization and minimization 
of the automata we generate. 

This approach is clearly more efficient than using 
Büchi automata for the same purpose. A benefit of our 
approach is that it does not require the detection of cycles 
in the product of the automaton with the program trace. 
Rather, all that is needed in terms of storage is the current 
state of the program, and the current state of the 
automaton. There are, therefore, no scalability issues 
involved. Additionally, we are able to generate minimal 
deterministic automata. Büchi automata provide full 
expressiveness only when they are non-deterministic. 
Finding the optimal (or approximately optimal) sized 
automaton for an LTL formula is PSPACE-hard [14].  

An issue that occurs is whether LTL is the most 
appropriate language for expressing properties of running 
programs. LTL is a logic that has been widely used for 
expressing properties of reactive systems. This is 
particularly so in the domain of model checking. We 
believe that runtime monitoring and model checking will 
form components of extended debugging environments. It 
is therefore crucial to allow users to specify properties 
that are supported by both approaches. 

From our experiments, the generation of observers is 
very efficient. So is their behavior during runtime 
analysis; specifications are checked in time linear in the 
length of the program trace that is examined. The core of 
our future research will therefore concentrate on how to 
improve the interaction of the running program with the 

observer so as to allow maximal independence between 
the two, but minimal disruption to the running program.  
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